Summary of the THINC procedure

Summary of the THINC procedure

Scroll Down

Summary of the THINC procedure

In order to facilitate implementation, here we summarize the computational steps to update the function from $(\phi^n, \bar^n)$ to $(\phi^{n+1}, \bar^{n+1})$.
Step 1: Calculate the surface polynomial $P_$ in
$$P_
(x,y,z)=\sum_{s,t,r=0}^a_X^sY^tZ^r$$
or
$$P_
(x,y,z)=\sum_{s+t+r\leq p}^a_X^sY^tZ^r$$
for interface cells $(\epsilon \leq \bar
^n\leq 1-\epsilon)$ with the coefficients computed from
$$P
(x_,y_,z_)=\phi_^n ,~~l=0,1,...,p.$$
or the least square method using the value of LS function $\phi^n$ in the supporting cells;
Step 2: Compute the correction to LS function, $\phi_^\Delta$, for tinterface cells to satisfy the mass conservation constraint
$$\frac{1}{|\Omega_
|}\int_{\Omega_}\frac{1}{2}(1+tanh(\beta(P_+(x,y,z)+\phi_^\Delta)))=\bar^n$$
from the volume fraction $\bar
^n$;
Step 3: Find the LS values, $\phi_^=\phi_^n+\phi_^\Delta$, for interface cells, and reinitialize the LS values
$$|\nabla \phi|=1$$
for other cells to synchronize the global LS function from $\phi_
^n$ to $\phi_^$ that fulfill the mass/volume conservation;
Step 4: Update the LS function from $\phi^$ to $\phi^{n+1}$ by the fifth-order Hamilton-Jacobo WENO scheme and the 3rd-order TVD Runge-Kutta scheme;
Step 5: Update the volume fraction by
$$\frac{d\bar
(t)}=-(\frac{1}{\Delta x}(F{i+\frac{1}{2}jk}^{}-F_{i-\frac{1}{2}jk}^{})+\frac{1}{\Delta y}(F_{ij+\frac{1}{2}k}^{}-F_{ij-\frac{1}{2}k}^{})+\frac{1}{\Delta z}(F_{ijk+\frac{1}{2}}^{}-F_{ijk-\frac{1}{2}}^{}))$$
where the numerical fluxes of interface cells are computed from the THINC function
$$H(x,y,z,t)=\frac{1}{2}(1+tanh(\beta(P_
(x,y,z)+\phi_^\Delta)))=\bar^n$$
using Gaussian quadrature formula
$$F
{i+\frac{1}{2}jk}^{}=\sum_^w_g(u(x_{i+\frac{1}{2}},y_g,z_g)H_i^jk(x_{i+\frac{1}{2}},y_g,z_g))$$
The 3rd-order Runge-Kutta scheme is used to predict the volume fraction $\bar
^{n+1}$ at new time level;
Step 6: Go back to step 1 to repeat the computation for next time level